Telegram Group & Telegram Channel
Российская языковая модель A-Vibe от Авито возглавила рейтинг легких ИИ-решений (до 10 млрд параметров) в независимом бенчмарке MERA.

Разработка команды классифайда обошла признанных зарубежных конкурентов — GPT-4o mini от OpenAI, Gemma 3 27B от Google, Claude 3.5 Haiku от Anthropic и Mistral Large.

Модель демонстрирует впечатляющие результаты работы с русским языком. В тестах генерации кода A-Vibe показала результат на 25% лучше, чем Gemini 1.5. При ведении диалогов она оказалась на 32% точнее Llama 3.1. А в анализе смысла текста превзошла Claude 3.5 Haiku на 23%.

Технические возможности A-Vibe позволяют ей одновременно обрабатывать до 32 тысяч токенов контекста. Это дает модели серьезное преимущество при работе с объемными документами и поддержании длительных осмысленных диалогов. Уже сегодня технология активно используется в сервисах Авито, помогая продавцам создавать качественные описания товаров и ускоряя коммуникацию в мессенджере платформы.

«Первое место доказывает, что оптимизированная архитектура и качественные данные могут обеспечить отличные результаты даже при небольшом размере модели. A-Vibe создавалось оптимальной по соотношению между качеством, скоростью работы и затратой ресурсов. Такой баланс позволяет обеспечивать быструю обработку запросов даже в периоды пиковой нагрузки и масштабировать технологию на всю аудиторию платформы», — отметил Андрей Рыбинцев, старший директор по данным и аналитике Авито.

До конца года Авито внедрит в свою нейросеть еще 20 сценариев, а в будущем может сделать ее общедоступной.

Познакомиться с рейтингом можно на сайте MERA. В фильтре «Размер модели» выберите «≥5B — 10B», чтобы получить рейтинг среди небольших моделей. Цифры Human Benchmark — это результат тестирования реальных людей.



tg-me.com/machinelearning_interview/1704
Create:
Last Update:

Российская языковая модель A-Vibe от Авито возглавила рейтинг легких ИИ-решений (до 10 млрд параметров) в независимом бенчмарке MERA.

Разработка команды классифайда обошла признанных зарубежных конкурентов — GPT-4o mini от OpenAI, Gemma 3 27B от Google, Claude 3.5 Haiku от Anthropic и Mistral Large.

Модель демонстрирует впечатляющие результаты работы с русским языком. В тестах генерации кода A-Vibe показала результат на 25% лучше, чем Gemini 1.5. При ведении диалогов она оказалась на 32% точнее Llama 3.1. А в анализе смысла текста превзошла Claude 3.5 Haiku на 23%.

Технические возможности A-Vibe позволяют ей одновременно обрабатывать до 32 тысяч токенов контекста. Это дает модели серьезное преимущество при работе с объемными документами и поддержании длительных осмысленных диалогов. Уже сегодня технология активно используется в сервисах Авито, помогая продавцам создавать качественные описания товаров и ускоряя коммуникацию в мессенджере платформы.

«Первое место доказывает, что оптимизированная архитектура и качественные данные могут обеспечить отличные результаты даже при небольшом размере модели. A-Vibe создавалось оптимальной по соотношению между качеством, скоростью работы и затратой ресурсов. Такой баланс позволяет обеспечивать быструю обработку запросов даже в периоды пиковой нагрузки и масштабировать технологию на всю аудиторию платформы», — отметил Андрей Рыбинцев, старший директор по данным и аналитике Авито.

До конца года Авито внедрит в свою нейросеть еще 20 сценариев, а в будущем может сделать ее общедоступной.

Познакомиться с рейтингом можно на сайте MERA. В фильтре «Размер модели» выберите «≥5B — 10B», чтобы получить рейтинг среди небольших моделей. Цифры Human Benchmark — это результат тестирования реальных людей.

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1704

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Machine learning Interview from ms


Telegram Machine learning Interview
FROM USA